B.SC. THIRD SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course ID: 32111

Course Code: SH/MTH/301/C-5

Course Title: Theory of Real Functions and Introduction to Metric Space

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

- 1. Answer *any five* of the following questions:
 - a) Let X be a non-empty set and $f: X \to R$ be an injective function. Then prove that $d(x, y) = |f(x) f(y)|, \forall x, y \in X$ defines a metric on X.
 - b) If $f(x) = (x^2 1)|x^2 3x + 2| + \cos |2x|$, then find the set of points of non differentiability.
 - c) If f(x) is differentiable on (a, b) and f(a) = 0 and there exists a real number k such that $|f'(x)| \le k |f(x)|$ on [a, b], then show that f(x) = 0 for all $x \in [a, b]$.
 - d) If f(x + y) = f(x)f(y) for all x and y, f(3) = 3 and f'(0) = 11, then find f'(3).
 - e) If P(x) is a polynomial of degree >1 and $k \in R$. Prove that between any two real roots of P(x)=0 there is a real root of P'(x) + kP(x) = 0.
 - f) Show that there does not exist a function \emptyset such that $\emptyset'(x) = f(x)$, where f(x) = [x].
 - g) Let (X, d) be a metric space and $Y \subseteq X$ where Y is separable and dense in X. Show that X is separable.
 - h) If f(x) = sinx, prove that $\lim_{h \to 0} \theta = \frac{1}{\sqrt{3}}$, where θ is given by $f(h) = f(0) + hf'(\theta h)$.
- 2. Answer *any four* of the following questions: $(5 \times 4 = 20)$
- a) (i) If the functions f, g and their derivatives are continuous in [a, b] and if f(x)g'(x) g(x)f'(x) ≠ 0, then show that between any two roots of f(x) = 0 there lies a root of g(x) = 0.

(ii) Prove or disprove: "Let f be continuous in a bounded open interval (a, b) and $\lim_{x\to a+} f(x)$ and $\lim_{x\to b-} f(x)$ both exist finitely. Then f(x) is uniformly continuous on [a, b]."

b) Let $a, b \in R$ and a < b. If a function f is continuous on (a, b) except possibly at $c \in (a, b)$. If $\lim_{x\to c} f'(x)$ is finite, then prove that f'(c) = l.

Time: 2 Hours

 $(2 \times 5 = 10)$

- c) (i) Show that ' θ ' which occurs in the Lagrange's Mean Value theorem tends to $\frac{1}{2}$ as $h \to 0$, provided f'''(x) is continuous.
 - (ii) Let $f\left(\frac{x+y}{2}\right) = \frac{1}{2}[f(x) + f(y)]$, for all x and y. If f'(0) exists and equals (-1) and f(0) = 1, find f(3). 3+2
- d) Let D ⊂ R be a bounded set and f: D → R be a function. If for each Cauchy sequence {x_n} in D, the sequence {f(x_n)} is a Cauchy sequence in R, then show that f is uniformly continuous on D.
- e) (i) Expand sin x in powers of (x π/2) with the help of Taylor's theorem.
 (ii) Let the real line R be endowed with usual metric d. Give an example of two closed
 - subsets A and B in (R, d) such that d(A, B) = 0, but $A \cap B = \phi$. (3+2)
- f) Let us define a function $d: R^2 \times R^2 \to R$ by $d(x, y) = \begin{cases} |x_2 - y_2| & \text{if } x_1 = y_1 \\ |x_1 - y_1| + |x_2| + |y_2| & \text{if } x_1 \neq y_1 \end{cases}$

where $x = (x_{1,}x_{2,}), y = (y_{1,}y_{2})$ are arbitrary elements of R^{2} . Prove that d is a metric on R^{2} .

- 3. Answer *any one* of the following questions: (10 x 1= 10)
 - a) (i) Let f be twice differentiable and |f(x)| < α, |f''(x)| < β, for x > a, then show that |f'(x)| < 2√αβ, for all x > a.
 (ii) If x₁,x₂,....,x_n are arbitrary points of a metric space (X, d), then prove that d(x₁, x_n) ≤ d(x₁, x₂) + d(x₂, x₃) + … + d(x_{n-1}, x_n).
 (iii) Let X be the set of all real-valued continuous functions on [0,1]. Define d(f,g) = ∫₀¹|f(x) g(x)|dx, for all f, g ∈ X. Show that d is a metric for X. (3+4+3)
 - b) (i) Let f: R → R be continuous on R. A point c ∈ R is said to be a fixed point of f if f(c) = c holds. Prove that the set of all fixed points of f is a closed set.

(ii) If f is defined and differentiable on an interval, then show that the range of f' is an interval

(iii) Let I = [a, b] be a closed and bounded interval, and a function $f: I \rightarrow R$ be continuous on *I*. Then show that *f* is uniformly continuous on *I*. (3+3+4)